FENWICK ENGINEERING TECHNOLOGY

CONCRETE TECHNOLOGY AND PRODUCTION PRACTICE

BLOCK MACHINE MANUFACTURE - 1 DAY

This course CAN ONLY be attended after attending the course 'CONCRETE TECHNOLOGY AND BATCH PLANT DESIGN FOR PRECAST CONCRETE MANUFACTURE which is designed to precede this course.

COURSE OBJECTIVES

This course provides an in depth understanding of the following:

- * The main products produced on block machines Concrete Paving Blocks and Masonry blocks etc.
- * Semi-dry concrete technology applied to these products. and special techniques required to produce semi-dry concrete and related batch plant design.
- * Block machine operation and process technology principles and practice.

by

FENWICK ENGINEERING TECHNOLOGY

Richard G Fenwick

Copyright 2001 - Fenwick Engineering Technology

INDEX

- 1. IMPORTANT PROCESS RELATED PROPERTIES OF PRODUCTS TYPICALLY MANUFACTURED ON BLOCK MACHINES.
 - 1.1 CONCRETE BLOCK PAVING
 - 1.2 BUILDING AND MASONRY BLOCKS
- 2. APPLICATION OF CONCRETE BLOCK PAVING
 - 2.1 THE INFLUENCE OF SHAPE ON LOAD CARRYING CAPABILITY
 - 2.2 THE INFLUENCE OF THICKNESS ON LOAD CARRYING CAPABILITY
 - 2.3 SUB BASE DESIGN a simple explanation.
 - 2.4 LAYING PRACTICE
- 3. SEMI-DRY CONCRETE TECHNOLOGY A REVIEW
 - 3.1 WATER/CEMENT RATIO
 - 3.2 CEMENT CONTENT
 - 3.2.1 CONCRETE PAVING BLOCKS CONCRETE BLOCK PAVING
 - 3.2.2 BUILDING BLOCKS
 - 3.3 MINIMUM SURFACE AREA OF AGGREGATES IN A MIX
 - 3.4 COMPACTION
 - 3.4.1 BLOCK MACHINE COMPACTION
 - 3.4.2 ADDITIVES AND COMPACTION
 - 3.5 COMPACTION AND QUALITY CONTROL
 - 3.6 THE IMPORTANCE OF CURING PRACTICAL TECHNIQUES
 - 3.6.1 DESIGN PARAMETERS FOR SATISFACTORY CURING
 - 3.6.2 PRACTICAL SOLUTIONS
- 4. PROPERTIES OF FRESH SEMI-DRY CONCRETE THE IMPORTANT FACTORS

5. MIX DESIGN - FOR CONCRETE PAVING BLOCKS, BUILDING BLOCKS AND RELATED PRODUCTS

- 5.1 MIX DESIGN A REVIEW
- 5.2 FACTORS IN MIX DESIGN FOR CONCRETE BLOCK PAVING
 - 5.2.1 AGGREGATE SHAPE AND TEXTURE
 - 5.2.2 SKID RESISTANCE ACID SOLUBILITY
 - 5.2.3 AGGREGATE GRADING
- 5.3 FACTORS IN MIX DESIGN FOR BUILDING AND MASONRY BLOCKS
- 5.4 ADMIXTURES
- 6. CEMENT SUBSTITUTES AND THE SEMI-DRY PROCESS
 - 6.1 PULVERISED FUEL ASH PFA
 - 6.2 GROUND GRANULATED BLAST FURNACE SLAG GGBFS
 - 6.3 MICROSIILICA
- 7. COLOURED CONCRETE AND THE SEMI-DRY PROCESS
- 8. SPECIAL REQUIREMENTS FOR 'SEMI-DRY' BATCH PLANTS
 - 8.1 BULK STORAGE OF AGGREGATES
 - 8.2 FEED SYSTEM TO THE STORAGE SYSTEM AGGREGATES
 - 8.3 STORAGE OF AGGREGATES AND MOISTURE COMPENSATION
 - 8.4 COLOUR SYSTEMS
 - 8.5 MIXING AND WATER CONTROL
 - 8.6 MULTI-COLOURED PRODUCTS
 - 8.7 TRANSPORT AND STORAGE OF THE FINISHED BATCH

9. BLOCK MACHINES - FUNDAMENTALS OF MECHANICAL AND PROCESS OPERATION

- 9.1 DESCRIPTION AND MARKET
- 9.2 BASIC MACHINE PRINCIPLES
- 9.3 FACE MIX
- 9.4 WIPES
- 9.5 PALLETS
- 9.6 BOTTOM PLATE
- 9.7 MOULDS
- 9.8 MOULD SPECIFICATION AND PRODUCTION TECHNOLOGY
- 9.9 MOULD LOCATION IN THE BLOCK MACHINE
- 9.10 MOULD AND TAMPER BEAD SUSPENSION SYSTEMS
- 9.11 VIBRATION SYSTEMS
- 9.12 PRINCIPLES AND SET-UP OF VIBRATION SYSTEMS
- 9.13 PRE-VIBRATION FOR FILLING AND MAIN VIBRATION
- 9.14 BRAKING AND SYNCHRONISATION
- 9.15 FILLER BOX
 - 9.15.1 FUNCTION AND MECHANICAL DESIGN.
 - 9.15.2 PROCESS ADJUSTMENTS TO ACHIEVE AN EVEN FILL.
 - 9.15.3 OSCILLATION SETTINGS
 - 9.15.4 AGITATORS AND INTERNAL PLOUGHS

10. HOW A PRODUCTION MANAGER SHOULD RUN AN AUTOMATED PLANT

11. OVERALL COURSE CONCLUSION